报告人:陈柏辉
报告地点:数学与统计学院 二楼会议室
报告时间:2023年5月26日星期五14:50-15:35
邀请人:刘杰锋
报告摘要:
The Arnold conjecture was a celebrated conjecture in symplectic geometry which conjectures the number of fixed points of a Hamiltonian deformation of a symplectic manifold is lower bounded by the sum of the betti numbers of the manifold. The conjecture was solved at the end of last century. Around 2000, W. Chen-Ruan developed the Gromov-Witten theory on symplectic orbifold (groupoids). Motivated by Chen-Ruan’s works, it is natural to explore (symplectic) geometry/topology in orbifold categories. In this talk, we report on an ongoing project on the Arnold conjecture on symplectic orbifolds. This is a joint work with Chengyong Du, Kaoru Ono and Bai-Ling Wang.
主讲人简介:
陈柏辉,四川大学数学学院教授,博士生导师,教育部长江学者。研究方向为基础数学的几何与拓扑。工作涉及辛几何,低维拓扑与规范场理论,几何分析等。在《Adv.in Math.》、《Topology》、《Math. Ann.》、《Math.Z.》等国际著名杂志上发表多篇学术论文。