报告人:蒲学科
报告地点:腾讯会议ID:142 167 224
报告时间:2022年12月19日星期一9:00-10:30
邀请人:李敬宇
报告摘要:
It is widely known that the two famous nonlinear dispersive equations, Korteweg-de Vries (KdV) equation and the nonlinear Schr\"{o}dinger (NLS) equation, can be derived from various physics models. They were also derived formally in the context of the Euler-Poisson equation for ions in a plasma, in 1960's and 1970's. In this talk, we will justify these two dispersive limit mathematically rigorously in a PDE viewpoint, and give the convergence rate.
主讲人简介:
广州大学数学与信息科学学院教授、博士生导师。2009年毕业于中国工程物理研究院研究生部,获理学博士学位,应用数学方向,主要从事非线性偏微分方程的数学理论研究。目前已在Comm. Math. Phys., Arch. Ration. Mech. Anal., SIAM J. Math. Anal., Calc. Var. PDE, J. Differential Equations等重要数学期刊上发表论文多篇,多次获得国家自然科学基金委资助。