Thomson's Commutants Theorem on multiplication operators on the Bergman space over the annulus
报告人:黄寒松
报告地点:腾讯会议ID:929-707-634;会议密码:2022
报告时间:2022年12月4日星期日14:00-15:00
邀请人:段永江
报告摘要:
Thomson's theorem implies that on the Bergman space over the unit disk if $h$ is holomorphic on the closed unit disk, then there is a finite Blaschke product $B$ such that $h$ can be written as a function of $B$, and the commutant of the multiplication operator $M_h$ by $h$ equals that of $M_B$. In this talk we will see that it is essentially generalized to the Bergman space over an annulus under a mild condition. The situation is complicated compared with the classical Bergman space over the unit disk. We also consider the associated reducing subspaces of concerned multiplication operator.
主讲人简介:
黄寒松,华东理工大学数学学院教授,博士生导师,研究兴趣为函数空间上的算子理论。2009年博士毕业于复旦大学数学科学学院,同年进入华东理工大学工作至今。2014.8-2015.8在美国范德堡大学访学,2016年在上海数学中心访问。近年来在国内外学术刊物,如J. Funct. Anal., Proc. London Math. Soc, J. Geom. Anal.等杂志发表科研论文多篇。主持并完成国家自然科学基金数项。