当前位置: 首页 > 学术活动 > 正文
Twisted relative Rota-Baxter operators on Leibniz algebras and NS-Leibniz algebras
时间:2022年11月23日 12:22 点击数:

报告人:郭双建

报告地点:腾讯会议ID:632 581 600

报告时间:2022年11月24日星期四14:55-15:45

邀请人:陈良云

报告摘要:

In this paper, we introduce twisted relative Rota-Baxter operators on Leibniz algebras as a generalization of twisted Poisson structures. We define the cohomology of a twisted relative Rota-Baxter operator $K$ as the Loday-Pirashvili cohomology of a certain Leibniz algebra induced by $K$ with coefficients in a suitable representation. Then we consider formal deformations of twisted relative Rota-Baxter operators from cohomological points of view. Finally, we introduce and study NS-Leibniz algebras as the underlying structure of twisted relative Rota-Baxter operators.

主讲人简介:

郭双建,教授,博士(后),硕士生导师,美国数学评论和德国数学文摘杂志评论员。 发表SCI论文40余篇,主持省部级以上课题9项,其中主持国家自然科学基金项目3项;“西部之光”访问学者;获贵州省自然科学三等奖1次(排名第一),贵州省科学技术进步三等奖1次(排名第四);第十届贵州省高等教育教学成果奖一等奖(排名第三),贵州省数学重点学科学科方向带头人。主要研究方向为代数学。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237