In this talk, we will present the recent progress on axisymmetric solution to the 3D Navier-Stokes equations. Moreover, we will give a new local regularity criteria. It is slightly supercritical and implies an upper bound for the oscillation of $\Gamma=r u^{\theta}$: for any $0< \tau<1$, there exists a constant $c>0$, $$|\Gamma(r,x_{3},t)|\leq N e^{-c\, |\ln r|^{\tau}},\ 0<r\leq \frac{1}{4}.$$ (Based on work with Hui Chen and Taipeng Tsai)
浙江大学教授,国家级青年人才,主要从事流体力学数学理论的研究,论文发表在 ARMA,JMPA,CMP, CPDE,SIMA等国际著名数学期刊。主持多项国家自然科学基金项目。