Existence of effective burning velocity in cellular flow for curvature G-equation
报告人:虞一峰
报告地点:Zoom会议ID:879 8610 2687
报告时间:2022年11月15日星期二8:00-9:30
邀请人:李勇、冀书关
报告摘要:
G-equation is a popular level set model in turbulent combustion, and becomes an advective mean curvature type evolution equation when the curvature effect is considered:
$$G_t + \left(1-d\, \Div{\frac{DG}{|DG|}}\right)_+|DG|+V(x)\cdot DG=0.$$
In this talk, I will show the existence of effective burning velocity under the above curvature G-equation model when $V$ is a two dimensional cellular flow. Our proof combines PDE methods with a dynamical analysis of the Kohn-Serfaty deterministic game characterization of the curvature G-equation based on the special structure of the cellular flow. This is a joint with Hongwei Gao, Ziang Long and Jack Xin.
会议密码:225926
主讲人简介:
虞一峰,本科毕业于南开大学陈省身数学试点班。加州大学伯克利分校数学博士。曾获中国高中数学联赛全国一等奖(1994年)。现为加州大学尔湾分校数学系教授。曾获美国国家自然科学基金(NSF)杰出青年奖(CAREER AWARD)。主要从事偏微分方程理论方面的研究。