Convergence analysis and error estimate of a class of nonlinear positivity-preserving finite volume schemes
报告人:吕俊良
报告地点:腾讯会议ID: 467-133-185
报告时间:2022年11月13日星期日14:30-15:30
邀请人:徐英祥
报告摘要:
In this talk, I will present the convergence analysis and error estimate of nonlinear positivity-preserving finite volume schemes for diffusion problems. These schemes are also named by nonlinear two-point flux approximation (NTPFA) methods. Due to their conservation and monotonicity, such schemes have attracted wide attention. However, the convergence analysis of them is still not available. In this work, we first give the convergence of nonlinear positivity-preserving finite volume methods providing the uniform coercivity of these numerical schemes, and then prove an $H^{1}$ error estimate through the analysis of consistent errors under suitable regularity assumptions on the exact solution. Some numerical examples are presented to demonstrate the theoretical results.
主讲人简介:
吕俊良,吉林大学数学学院,教授,博导,计算数学系系主任。2009年博士毕业于吉林大学数学学院,导师李永海教授。2011-2013年于浙江大学做博士后研究,合作导师包刚教授。2015-2016年美国普渡大学访问学者,合作导师李培军教授。
研究兴趣包括散射问题的自适应有限元方法及其理论分析,反散射问题的数值算法,辐射热传导问题的数值方法,有限体积元法的基础理论等。研究成果发表在SIAM J. Numer. Anal.,Math. Comp.,J.Sci. Comput.以及IMA J. Numer. Anal.等杂志上。承担国家自然科学基金青年基金及面上项目、国防科工局核科学基础科研挑战专题项目等。
现任美国数学会数学评论员、中国仿真学会仿真算法专委员会委员、吉林省数学会第十一届理事会理事。