We exploit limiting measures of stationary measures of stochastic ordinary differential equations. Using the Freidlin-Wentzell large deviations principle, we prove that limiting measures are concentrated away from repellers which are topologically transitive, or equivalent classes, or admit Lebesgue measure zero. We also preclude concentrations of limiting measures on acyclic saddle or trap chains. This implies that any limiting measure will concentrated on Liapunov stable compact invariant sets if unperturbed ordinary differential equations are dissipative. Applications are made to the Morse-Smale systems, the Axiom A systems including structural stability systems and separated start systems, the gradient or gradient-like systems, those systems possessing the Poincaré-Bendixson property with a finite number of limit sets to obtain that limiting measures live on Liapunov stable critical elements, Liapunov stable basic sets, Liapunov stable equilibria, Liapunov stable limit sets including saddle or trap cycles, respectively. Together these results with the Laplace method, we give the exact concentration of limiting measure of quasipotential systems, which is the support of stochastically stable invariant measure.
会议密码:123456
蒋继发,上海师范大学数理学院教授,博士生导师,上海市高峰项目《偏微分方程理论》学科方向负责人。1989年7月于中国科学院数学研究所获博士学位,获首届中国科学院院长奖学金特别奖。1992年被国家人事部评为有突出贡献的中青年专家,并获国务院政府特殊津贴;1993年分获安徽省科技进步奖二等奖和曾宪梓教育基金奖;1994年获中国科学技术大学首届《跨世纪优秀人才奖》;2004-2006连续三年被中国科学院评为“优秀研究生指导导师”;培养了两名博士生分获2004、2006年教育部全国百篇优秀论文。曾在中国科学技术大学任教十年,主持建立了全国第一个生物数学博士点。蒋继发教授最先把单调动力系统的研究引入我国,并一直是我国这一方向的学术带头人。曾主持多项国家自然科学基金委面上项目、参加多项国家自然科学基金委重点项目,主持多项国家教委(教育部)、科学院、上海市科委和教委项目。已发表130余篇SCI论文。