Sample compression schemes were first proposed by Littlestone and Warmuth in 1986. Proper compression can guarantee good generalization performance. Undirected graphical model is a powerful tool for classification in machine learning. In this paper, we consider labeled compression schemes for concept classes induced by discrete undirected graphical models. For the undirected graph of two vertices with no edge, $X_{1} \in \{0,1\}$, $X_{2} \in \{0,1,\ldots,k_{2}-1\}$ ($k_{2} \in \mathbb{N}$, $k_{2} \ge 2$), we establish a labeled compression scheme of size $k_{2}+1$. Furthermore, we construct a labeled compression scheme of size VC dimension for classes associated the undirected graph which has three vertices ${X_1}$, ${X_2}$, ${X_3}$ and two edges, where $X_{1} \in \{0,1\}$, $X_{i} \in \{ {0,1,\ldots,k_{i} - 1}\}$, $k_{i} \in \mathbb{N}$, $k_{i} \ge 2$, $i=2,3$. Consequently, for any undirected graphical model whose underlying graph has two cliques $K_{1}=\{X_{1}, X_{2}, \ldots, X_{n_{1}}\}$, $K_{2}=\{X_{2}, X_{3}, \ldots, X_{n}\}$ with $X_{1}\in \{0,1\}$, there is a labeled compression scheme of size VC dimension of the corresponding concept class. It is an open question whether the concept class induced by a general discrete undirected graphical model has a sample compression scheme of size VC dimension.
李本崇,西安电子科技大学华山菁英副教授,硕士生导师。2001--2012年在东北师范大学读书,获概率论与数理统计方向博士学位。主要从事图模型和代数统计领域的研究,在国际知名统计学期刊 Pattern Recognition,Statistica Sinica,中国科学-数学等发表论文 12 篇(一作8篇,二作1篇,三作3篇)。曾主持国自然青年基金,陕西省青年基金;现主持国自然面上项目,陕西省面上项目。中国现场统计研究会大数据统计分会、数据科学与人工智能分会理事;全国工业统计学教学研究会、青年统计学家协会理事、数字经济与区块链技术分会理事(副秘书长);中国人工智能学会不确定性人工智能专委会委员;陕西省工业与应用数学学会理事;陕西省统计学学会理事;美国数学会评论员。