Effective association detection based on family data to correct for population stratification
报告人:周影
报告地点:腾讯会ID:148-771-243
报告时间:2022年10月19日星期三10:50-11:40
邀请人:朱文圣
报告摘要:
Exploring associations between complex traits and genetic variants plays an important role in biostatistics and many approaches have been developed in this area. Moreover, a large amount of data were collected from familial and longitudinal studies in recent years. The major challenges to analyze this type of data are population stratification and the correlation within the family. However, most of the current methods are based on data of independent individuals and cannot handle the population stratification effect well. In this paper, we present a semi-parametric strategy (called PC-GEE) based on family data to detect associations. We use extensive simulation experiments to evaluate the performance of the PC-GEE method. Besides, we apply the proposed method to analyze GAW 17 mini-exome data.
主讲人简介:
周影,黑龙江大学数学科学学院教授、硕士生导师,2008年7月博士毕业于东北师范大学数学与统计学院。目前兼任中国现场统计研究会理事、中国统计学会理事、中国现场统计研究会数据科学与人工智能分会常务理事、黑龙江省数学会常务理事、黑龙江省统计学会理事等职务。主要从事生物统计和应用统计领域的研究。主持国家自然科学基金面上项目、青年基金项目等3项、黑龙江省自然科学基金项目2项。在《中国科学》,BIOMETRICAL J,EUR J HUM GENET等期刊上发表高水平研究论文多篇,出版教材2部。