当前位置: 首页 > 学术活动 > 正文
一种协变量调整的大规模相依多重检验方法
时间:2022年10月15日 10:28 点击数:

报告人:王鹏飞

报告地点:腾讯会议ID:148-771-243

报告时间:2022年10月19日星期三10:00-10:50

邀请人:朱文圣

报告摘要:

Large-scale multiple testing, which calls for tens of thousands of hypothesis testings simultaneously, has been applied in many scientific fields. Conventional multiple testing procedures often focused on the control of false discovery rate (FDR) and largely ignored covariate information and the dependence structure among tests. In this paper, we propose an FDR control procedure, termed as Covariate-Modulated Local Index of Significance (cmLIS) procedure, for large-scale multiple testing. The cmLIS procedure not only takes into account local correlations among tests but also accommodates the covariate information by leveraging a covariate-modulated hidden Markov model (HMM). In the oracle case that all parameters of the covariate-modulated HMM are known, we show that the cmLIS procedure is valid and optimal in some sence. According to whether the number of mixed components in the non-null distribution is known, we provide two Bayesian sampling algorithms for parameter estimation. Extensive simulations are conducted to demonstrate the effectiveness of the cmLIS procedure over state-of-the-art multiple testing procedures. Finally, we apply the cmLIS procedure to dosage response data.

主讲人简介:

王鹏飞,硕士生导师,现为东北财经大学统计学院讲师。2020年博士毕业于东北师范大学机器学习与生物信息学(统计学)专业。主要从事大规模多重检验、生物信息学、精准医疗等研究方向,在Scandinavian Journal of Statistics, Test, BMC Bioinformatics, Genetics Research, Communications in Statistics - Simulation and Computation等SCI学术期刊发表多篇论文。主持辽宁省教育厅项目 1 项,参加国家自然科学基金 2项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237