当前位置: 首页 > 学术活动 > 正文
4 × 4 Irreducible sign pattern matrices that require four distinct eigenvalues
时间:2022年10月14日 12:20 点击数:

报告人:李忠善

报告地点:腾讯会议ID:834 443 775

报告时间:2022年10月15日星期六10:00-11:00

邀请人:陈良云、张道畅

报告摘要:

A \emph{sign pattern matrix} is a matrix whose entries are from the set $\{+,-, 0\}$. For   a real matrix $B$, sgn$(B)$ is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of $B$ by $+$ (respectively, $-$, 0). For a sign pattern matrix $A$, the {\it qualitative class of $A$}, denoted $Q(A)$, is the set of all real matrices whose entries have signs given by the corresponding entries of $A$. An $n\times n$ sign pattern matrix $A$ requires all distinct eigenvalues if every real matrix in $Q(A)$ has $n$ distinct eigenvalues. In the article ``Sign patterns that   require all distinct eigenvalues'', {\it JP J. Algebra Number Theory Appl.}, 2:2 (2002), 161--179, Li and Harris characterized the $2 \times 2$ and $3\times 3 $ irreducible sign pattern matrices that require all distinct eigenvalues, and established some useful general results on $n\times n$ sign patterns that require all distinct eigenvalues. In this talk, we characterize $ 4\times 4 $ irreducible sign   patterns that require four distinct eigenvalues. This is done by characterizing $ 4\times 4 $ irreducible sign patterns that require four distinct real eigenvalues, or require four distinct nonreal real eigenvalues, or require two distinct real eigenvalues and a pair of conjugate nonreal eigenvalues. The last case turns out to be much more involved. The cycle structure of the signed digraph of the sign pattern plays a key role. Some interesting open problems are presented. Three important tools that are used in the paper are the following: the positivity (or negativity) of the discriminant of the characteristic polynomial; the fact that if a square sign pattern matrix $A$ requires all distinct eigenvalues then $A$ requires a fixed number of real eigenvalues; and the known result that if $A$ is an ``$k$-cycle'' sign pattern then it requires $k$ eigenvalues evenly distributed on a circle centered at the origin.

主讲人简介:

李忠善,美国Georgia State University(佐治亚州立大学)数学系终身正教授。主要从事组合矩阵论的研究,包括符号模式矩阵、最小秩问题、特征值问题,矩阵流形,非负矩阵、代数图论、整数矩阵、实线性子空间的符号向量集等。曾多次应邀出席数学国际学术会议并报告论文, 并应邀在北京大学、中科院系统所、清华大学,北京师范大学、南开大学、等数十所高校作学术报告,在《American Mathematical Monthly》,《Linear Algebra and Its Applications》,《SIAM J. on Discrete Mathematics》, 《J. Combin. Theory Ser. B》, 《Linear and Multilinear Algebra》, 《Graphs and Combinatorics》,《IEEE Transactions on Neural Networks and Learning Systems》 等重要国际学术期刊上发表论文70余篇,近五年发表21篇学术论文,并出版学术专著《Handbook of Linear Algebra》中的一章,主持或参与多项科研项目。目前还担任美国《Mathematical Reviews》特约评论员,《JP Journal of Algebra,Number Theory and Applications》杂志编委等职务。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237