当前位置: 首页 > 学术活动 > 正文
Stochastic Algorithms for Nonconvex Finite-Sum Optimization
时间:2022年10月10日 08:32 点击数:

报告人:肖现涛

报告地点:腾讯会议ID:889 864 8458

报告时间:2022年10月11日星期二14:00-15:00

邀请人:徐东坡

报告摘要:

In this talk, we will consider the stochastic algorithms for finite-sum optimization problems with nonconvex loss models, which frequently arise in statistics and machine learning. For problems with simple convex regularizes, we introduce a stochastic semismooth Newton method. For problems with possibly nonconvex regularizes, we propose a stochastic first-order primal-dual method based on conjugate duality.

会议密码:115119

主讲人简介:

肖现涛,现在任大连理工大学数学科学学院教授、博士生导师。2003年本科毕业于郑州大学,2009年博士毕业于大连理工大学。近期的研究方向为: 求解复合优化和随机优化问题的算法。目前发表学术论文40余篇,其中部分论文发表在SIAM Journal on Optimization, Mathematics of Operations Research, INFORMS Journal on Computing, Journal of Scientific Computing, Science China Mathematics等期刊。主持国家自然科学基金4项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237