Poincare-Birkhoff-Witt theorem for the universal enveloping algebra of a Rota-Baxter (resp. differential) Lie algebra
报告人:高兴
报告地点:腾讯会议ID:386-435-298
报告时间:2022年10月11日星期二10:00-11:00
邀请人:陈良云、刘杰锋
报告摘要:
Rota-Baxter associative algebras and Rota-Baxter Lie algebras are both important in mathematics and mathematical physics, with the former a basic structure in quantum field renormalization and the latter an operator form of the classical Yang-Baxter equation. An outstanding problem posed by Gubarev is to determine whether there is a Poincar\'e-Birkhoff-Witt theorem for the universal enveloping Rota-Baxter associative algebra of a Rota-Baxter Lie algebra. This talk answers this problem positively under some mild condition, working with operated algebras and applying the method of Gr\"obner-Shirshov bases. Parallelly, a differential version of the Poincare-Birkhoff-Witt theorem for the universal enveloping algebra of a differential Lie algebra is also given.
主讲人简介:
高兴,博士,兰州大学“萃英学者”、教授,博士生导师。于2010年7月在兰州大学数学与统计学院获得博士学位,留校工作至今。在2015年8月至2016年8月间,在美国Rutgers大学交流访问。主要从事Rota-Baxter代数和代数组合等领域的研究, 发表SCI学术论文四十余篇,主持数学天元基金、青年科学基金、国家自然科学基金面上项目和甘肃省自然科学基金项目, 获甘肃省自然科学奖二等奖,出版教材一本。