当前位置: 首页 > 学术活动 > 正文
2-roots for simply laced Weyl groups
时间:2022年10月05日 09:14 点击数:

报告人:徐天元

报告地点:腾讯会议ID:583-2367-1959

报告时间:2022年10月14日星期五08:00-09:00

邀请人:陈银

报告摘要:

We introduce and study “2-roots”, which are symmetrized tensor products of orthogonal roots of Kac-Moody algebras. We concentrate on the case where $W$ is the Weyl group of a simply laced Y-shaped Dynkin diagram $Y_{a,b,c}$ with three branches of arbitrary finite lengths $a$, $b$ and $c$; special cases of this include types $D_n$, $E_n$ (for arbitrary $ n\geq 6$), and affine $E_ 6$, $E_7$ and $E_8$. We show that a natural codimension-$1$ submodule $M$ of the symmetric square of the reflection representation of $W$ has a remarkable canonical basis $\mathcal{B}$ that consists of 2-roots. We conjecture that, with respect to $\mathcal{B}$, every element of $W$ is represented by a column sign-coherent matrix in the sense of cluster algebras, and we prove the conjecture in the finite and affine cases. We also   prove that if $W$ is not of affine type, the module $M$ is completely   reducible in characteristic zero and each of its nontrivial direct summands is spanned by a $W$-orbit of 2-roots.(This is joint work with Richard Green.)

会议密码:2022

主讲人简介:

徐天元,2017年博士毕业于美国Oregon大学,研究方向为代数表示论与代数组合学;曾为加拿大女王大学Coleman博士后,美国科罗拉多大学博尔德分校Burnett Meyer博士后,现为美国Haverford大学助理教授。在 J. Algebra、 Algebra Combinatorics、 Algebra and Representation theory、Electronic J. Combinatorics等杂志发表多篇高水平论文。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237