报告人:陈健敏
报告地点:腾讯会议ID:583-2367-1959
报告时间:2022年09月30日星期五20:00-21:00
邀请人:陈银
报告摘要:
The spectral radius of matrix, also known as Frobenius-Perron dimension, is a useful tool for studying linear algebras and plays an important role in the classification of the representation categories of algebras. This talk focuses on the Frobenius-Perron theory of the representation categories of bound quiver algebras containing loops. We find a way to calculate the Frobenius-Perron dimension of these algebras when they satisfy the commutativity condition of loops. As an application, we prove that the Frobenius-Perron dimension of the representation category of a modified ADE bounded quiver algebra is equal to the maximum number of loops at a vertex. Moreover, we point out that there also exists infinite dimensional algebras whose Frobenius-Perron dimension is equal to the maximal number of loops by giving an example. This is a joint work with Jiayi Chen.
会议密码:2022
主讲人简介:
陈健敏,博士毕业于厦门大学,研究方向为代数表示与非交换代数几何;现为厦门大学数学科学学院教授。在 Int. Math. Res. Not.、 Ann. Inst. Fourier、J. Algebra、 Algebra Number Theory、 Transform. Groups等国际知名杂志发表高水平论文近20余篇。主持多项国家自然科学基金委项目。