当前位置: 首页 > 学术活动 > 正文
Frobenius-Perron theory of the bound quiver algebras containing loops
时间:2022年09月25日 10:08 点击数:

报告人:陈健敏

报告地点:腾讯会议ID:583-2367-1959

报告时间:2022年09月30日星期五20:00-21:00

邀请人:陈银

报告摘要:

The spectral radius of matrix, also known as Frobenius-Perron dimension, is a useful tool for studying linear algebras and plays an important role in the classification of the representation categories of algebras. This talk focuses on the Frobenius-Perron theory of the representation categories of bound quiver algebras containing loops. We find a way to calculate the Frobenius-Perron dimension of these algebras when they satisfy the commutativity condition of loops. As an application, we prove that the Frobenius-Perron dimension of the representation category of a modified ADE bounded quiver algebra is equal to the maximum number of loops at a vertex. Moreover, we point out that there also exists infinite dimensional algebras whose Frobenius-Perron dimension is equal to the maximal number of loops by giving an example. This is a joint work with Jiayi Chen.

会议密码:2022

主讲人简介:

陈健敏,博士毕业于厦门大学,研究方向为代数表示与非交换代数几何;现为厦门大学数学科学学院教授。在 Int. Math. Res. Not.、 Ann. Inst. Fourier、J. Algebra、 Algebra Number Theory、 Transform. Groups等国际知名杂志发表高水平论文近20余篇。主持多项国家自然科学基金委项目。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237