当前位置: 首页 > 学术活动 > 正文
Cocommutative vertex bialgebras
时间:2022年09月22日 08:41 点击数:

报告人:李海生

报告地点:腾讯会议ID:396 131 961

报告时间:2022年09月25日星期日8:00-9:00

邀请人:陈良云

报告摘要:

In this talk,we shall discuss the structure of cocommutative vertex bialgebras. For a general vertex bialgebra V, we show that the set G(V) of group-like elements is naturally an abelian semigroup, whereas the set P(V) of primitive elements is a vertex Lie algebra. For $g\in G(V)$, denote by $V_g$ the connected component containing g. Among the main results, we show that if V is a cocommutative vertex bialgebra, then $V=\oplus_{g\in G(V)}V_g$, where $V_1$ is a vertex subbialgebra which is isomorphic to the vertex bialgebra $\mathcal{V}_{P(V)}$ associated to the vertex Lie algebra P(V), and $V_g$ is a $V_1$-module for $g\in G(V)$. In particular, this shows that every cocommutative connected vertex bialgebra V is isomorphic to $\mathcal{V}_{P(V)}$ and hence establishes the equivalence between the category of cocommutative connected vertex bialgebras and the category of vertex Lie algebras. Furthermore, under the condition that G(V) is a group and lies in the center of V, we prove that $V=\mathcal{V}_{P(V)}\otimes C[G(V)]$ as a coalgebra where the vertex algebra structure is explicitly determined. This talk is based on a joint work with Jianzhi Han and Yukun Xiao.

主讲人简介:

李海生,美国Rutgers大学Camden分校终身教授,著名华人数学家、顶点算子代数奠基人之一,多年来一直从事无穷维李代数、顶点代数、顶点算子代数的重要表示与结构理论的研究。在Duke Math. J.、Adv. Math.、Math. Ann.、Comm. Math. Phys.、Trans. Amer. Math. Soc.、Israel J. Math.、Math. Z.、Selecta Math. (N.S.)、J. Algebra、J. Pure Appl. Algebra等著名期刊发表高水平学术论文100余篇,被同行文章引用超2000篇次。主持多项美国自然科学基金,一项中国自然科学基金(海外合作项目)。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237