Tests on High-Dimensional Two-sample Mean Vectors With Consideration of Correlation Structure
报告人:杨松山
报告地点:腾讯会议ID:366 959 546
报告时间:2022年3月21日星期一10:00-11:00
邀请人:郑术蓉
报告摘要:
This paper proposed a test statistic for testing high dimensional mean vector by imposing the linear structure on high dimensional correlation matrices. The proposed test is valid for both the low dimensional setting and high dimensional setting even if the dimension of the data is greater than the sample size. The limiting null distribution of the proposed test statistic is derived. Extensive simulations are conducted for estimating the precision matrix and testing high dimensional mean vector. Simulation results show that the proposed estimation and test perform well compared with the existing methods.
主讲人简介:
2013年本科毕业于北京师范大学数学科学学院,获学士学位。2018年毕业于美国宾夕法尼亚州立大学,获统计学博士学位。2018年至2021年在美国从事对冲基金量化研究工作。2021年9月加入中国人民大学统计与大数据研究院,任助理教授、博士生导师。研究兴趣包括高维数据分析,模型算法优化,机器学习以及统计模型在金融学、生理学和心理学中的应用。