当前位置: 首页 > 学术活动 > 正文
Control of eigenfunctions on surfaces of negative curvature
时间:2022年03月16日 09:28 点击数:

报告人:金龙

报告地点:腾讯会议ID:725-197-608

报告时间:2022年3月18日星期五10:00-11:00

邀请人:冀书关

报告摘要:

In this talk, we present a uniform lower bound for the mass in any fixed nonempty open set of normalized Laplacian eigenfunctions on negatively curved surfaces, independent of eigenvalues. The result extends previous joint work with Semyon Dyatlov on surfaces with constant negative curvature. The proof relies on microlocal analysis, chaotic behavior of the geodesic flow and a new ingredient from harmonic analysis called Fractal Uncertainty Principle by Jean Bourgain and Semyon Dyatlov. Further applications include control for Schr\"{o}dinger equation and exponential decay of energy for damped waves. This is based on joint work with Semyon Dyatlov and St\'{e}phane Nonnenmacher.

会议密码:220318

主讲人简介:

金龙,2006年第47届国际数学奥林匹克竞赛(IMO)金牌获得者,2010年本科毕业于北京大学数学科学学院,2015年博士毕业于美国加州大学伯克利分校,随后在美国哈佛大学从事博士后研究。目前工作于清华大学丘成桐数学科学中心,主要从事与微分方程和数学物理相关的谱理论及散射理论等方面的研究,于Acta Math.和JAMS等顶级学术刊物发表学术论文多篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237