当前位置: 首页 > 学术活动 > 正文
High-Quality Bayesian Pansharpening
时间:2021年12月29日 17:21 点击数:

报告人:汪婷婷

报告地点:腾讯会议ID:537-528-836

报告时间:2021年12月29日星期三19:00-20:00

邀请人:刘俊

报告摘要:

Pansharpening is a process of acquiring a multi- spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions:

(1)the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image;

(2)the pan-sharpened image and the original multi-spectral image should share the same spectral information; and

(3)in each pan-sharpened image channel, the neighboring pixels not around the edges are similar.

We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.

主讲人简介:

汪婷婷,2021年博士毕业于华东师范大学,现在在该校科学与技术学院从事博士后研究,曾于2017年和2018年暑假分别赴香港浸会大学数学系和香港中文大学数学系进行访问交流。一直从事计算机视觉和遥感图像处理的相关研究,在国际知名期刊IEEE汇刊TIP、TVCG、TMM、TCYB和会议CVPR等共发表学术论文10余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237