当前位置: 首页 > 学术活动 > 正文
The necessary and sufficient conditions for the real Jacobian conjecture
时间:2021年12月04日 12:29 点击数:

报告人:赵育林

报告地点:腾讯会议ID:931-414-221

报告时间:2021年12月3日星期五16:00-17:00

邀请人:李勇、冀书关

报告摘要:

 In this talk, we focus on investigating the real Jacobian conjecture. The talk consists of two parts. The first part is to study  the two-dimensional real Jacobian conjecture via the method of the qualitative theory of dynamical systems. We provide some necessary and sufficient conditions such that the two-dimensional real Jacobian conjecture holds. Applying these results we present an algebraic criterion such that two-dimensional real Jacobian conjecture holds.  This algebraic criterion improves the main result of Braun et al  J. Differential Equations 260 (2016) 5250-5258. In the second part, the necessary and sufficient conditions on the n-dimensional real Jacobian conjecture is obtained. Using the tool from the nonlinear functional analysis,  F(x)  is a global injective if and only if the norm of F(x) approaches to infinite as the norm of x tends to infinity, which is a generalization of  the   algebraic criterion of  two-dimensional.

主讲人简介:

赵育林,中山大学数学学院(珠海)院长,教授、博士生导师, 2007入选教育部新世纪优秀人才支持计划。赵育林教授从事常微分方程定性理论和分支理论的研究工作,包括弱化的Hilbert 十六问题、周期单调性、代数极限环、高阶极限环分支问题等,已在J. Differential Equation、Nonlinearity、中国科学(英文版)等期刊上发表多篇学术论文。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237