报告人:刘海明
报告地点:腾讯会议ID:757 256 903
报告时间:2021年12月06日星期一14:40-15:40
邀请人:陈亮
报告摘要:
Gauss-Bonnet theorem connects the intrinsic differential geometry of a surface with its topology and has many applications in physics and mathematics. Recently, Balogh et al. used a Riemannian approximation scheme to prove a Heisenberg version of the Gauss-Bonnet theorem. Inspired by this work, Professor Wang and Wei investigated sub-Riemannian geometries of some typical spaces such as the affine group, the group of rigid motions of the Minkowski plane, the BCV spaces and the Lorentzian Heisenberg group, and proved Gauss-Bonnet theorems in these Lie groups. In this talk, we plan to introduce some results on Gauss-Bonnet theorems in three-dimensional Riemannian Lie groups such as roto-translation group and Lorentzian Sasakian space forms.
会议密码:5268
主讲人简介:
刘海明, 2015年6月毕业于东北师范大学,获理学博士学位,现任牡丹江师范学院数学科学学院副教授,硕士研究生导师,基础数学二级学科带头人,入选黑龙江省普通本科高校青年创新人才培养计划。研究方向为奇点理论、微分几何,代表性成果发表在《中国科学:数学》,《Journal of Geometry and Physics》等期刊。