Weak convergence of Euler-Maruyama's approximation for SDEs under integrability condition
报告人:邵井海
报告地点:腾讯会议ID:844 551 982
报告时间:2021年11月29日星期一14:30-15:30
邀请人:李晓月
报告摘要:
This work establishes the weak convergence of Euler-Maruyama's approximation for stochastic differential equations (SDEs) with singular drifts under the integrability condition in lieu of the widely used growth condition. This method is based on a skillful application of the dimension-free Harnack inequality. Moreover, when the drifts satisfy certain regularity conditions, the convergence rate is estimated. This method is also applicable when the diffusion coefficients are degenerate. A stochastic damping Hamiltonian system is studied as an illustrative example.
会议密码:123456
主讲人简介:
邵井海,天津大学应用数学中心教授、博士生导师。2006年获得北京师范大学与法国第戎大学的理学博士学位,同年在北京师范大学留校任教。2007年,赴德国伯恩大学跟随K. Sturm教授做两年博士后研究,同年获得中国数学学会“钟家庆数学奖”。2008年,获得“全国百篇优秀博士学位论文奖”。主要从事概率论遍历性理论、随机分析、随机微分方程等领域的研究工作,在Journal of Functional Analysis、Probability Theory and Related Fields、SIAM Journal on Control and Optimization、SIAM Journal on Mathematical Analysis、Stochastic Processes and their Applications 等国际期刊发表论文多篇。