当前位置: 首页 > 学术活动 > 正文
Feedback particle filter with correlated noises
时间:2021年11月23日 12:18 点击数:

报告人:罗雪

报告地点:腾讯会议ID:924 215 805

报告时间:2021年11月26日星期五13:00-14:00

邀请人:陈亮,徐英祥

报告摘要:

In this talk, we shall give an algorithm for the nonlinear filtering (NLF) problems with the noises correlated in some way. Motivated by the mean-field game theory, the feedback particle filter (FPF) for the signal-observation NLF model with independent white noises, has been developed in [23] for the first time. We shall extend this algorithm to the case where the scalar signal process is correlated with the scalar observation process. The equation that the control inputs $(K, u)$ satisfied has been derived by minimizing the Kullback-Leibler (K-L) divergence of the conditional density and the conditional posterior empirical distribution of the controlled particles. Then we show rigorously that the control inputs obtained is consistent, in the sense that if the initial conditional density and the empirical distribution are the same, so are the posterior ones. The explicit expression for the control input $u$ is given if $K$ is obtained. The numerical simulation of a scalar NLF problem with transition phenomenon has been solved by our algorithm with satisfactory performance not only in accuracy but also in efficiency.

会议密码:5268

主讲人简介:

罗雪,现任北京航空航天大学数学与系统科学学院副教授。2013年毕业于美国伊利诺伊大学芝加哥分校,获理学博士学位。主要从事非线性滤波理论和计算、谱方法算法在非线性滤波中的应用以及偏微分方程分析等领域的研究。2015年底,获升IEEE资深会员(senior member)。2016年,获丘成桐新世界数学奖博士论文银奖。近年来,在国际著名期刊 Automatica、IEEE Trans. Automat. Control、Comm. Partial Differential Equations、SIAM J. Numer. Anal.等上发表论文20余篇。主持北京市自然科学基金一项、国家自然科学基金一项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237