Generic Poincare-Bendixson Theorem for systems with invariant 2-cones and applications to SEIRS epidemic models
报告人:王毅
报告地点:腾讯会议ID:719 344 357
报告时间:2021年11月19日星期五16:00-17:00
邀请人:李勇、冀书关
报告摘要:
In this talk, we consider a smooth flow which is monotone w.r.t. a k-cone, a closed set that contains a linear subspace of dim-k and no linear subspaces of higher dimension. We show that orbits with initial data from an open dense (called generic) subset of the phase space are either pseudo-ordered or convergent to equilibria. This covers the celebrated Hirsch's Generic Convergence Theorem in the case k=1, and yields a generic Poincare-Bendixson Theorem for the case k=2. An application to SEIRS-models with nonlinear incidence rates will be presented to show the possibility of generic convergence to periodic orbits. This is a joint work with Lirui Feng and Jianhong Wu.
主讲人简介:
王毅,中国科技大学数学科学学院副院长,教授、博士生导师。2002年获得中国科技大学理学博士学位。2004年入选全国百篇优秀博士论文,2007年入选教育部新世纪优秀人才支持计划,2018年获基金委国家杰出青年科学基金资助。曾应邀对美国佐治亚理工学院、芬兰赫尔辛基大学、美国明尼苏达大学IMA研究所长期学术访问。主要研究领域为微分方程与动力系统,先后在包括JEMS、 Adv. Math、 Proc. London Math. Soc.、SIAM J. Math. Anal.、JDE、Tans. Amer. Math. Soc.等国际杂志发表论文30余篇。