Relative derived categories, relative singularity categories and relative defect categories
报告人:周国栋
报告地点:腾讯会议ID:679 241 137
报告时间:2021年11月16日星期二19:30-20:30
邀请人:扶先辉
报告摘要:
We introduce the relative Gorenstein defect category of an abelian category with respect to an admissible subcategory, generalizing Gorenstein defect categories of P.A. Bergh, D. Jorgensen and S. Oppermann. Under a mild condition of precovering property for the relative Gorenstein category, we show that the relative Gorenstein defect category is triangle equivalent to the relative singularity category with respect to the relative Gorenstein category. We also introduce relative Ding projective defect categories and under a similar condition, relate it to the relative singularity category with respect to the relative Ding projective category. Analogous results for relative Ding injective defect categories are also presented. We reprove and extend many results in the literature.
主讲人简介:
周国栋,华东师范大学数学科学学院教授,博士毕业于法国亚棉大学,师从著名代数学家Alexander Zimmermann教授。主要研究领域为代数表示论与同调代数。完成国家自然科学基金青年基金与面上基金、上海市浦江人才计划项目、教育部博士点新教师基金,主持在研国家自然科学基金面上项目一项,其学术成果发表在 J. London Math. Soc.、Math. Z.、Trans. Amer. Math. Soc.、IMRN、J. Algebra、J. Noncommut. Geom. Proc. Royal Edinburgh Soc. Section A: Math.等国际著名期刊上。 目前主要学术兼职有美国数学评论员与欧洲数学会评论员。