报告人:黄兆泳
报告地点:腾讯会议ID:269 508 062
报告时间:2021年11月9日星期二19:30-20:30
邀请人:扶先辉
报告摘要:
For a left and right Noetherian ring $R$, we give some equivalent characterizations for $_RR$ satisfying the Auslander condition in terms of the flat (resp. injective) dimensions of the terms in a minimal injective coresolution (resp. flat resolution) of left $R$-modules. Furthermore, we prove that for an artin algebra $R$ satisfying the Auslander condition, $R$ is Gorenstein if and only if the subcategory consisting of finitely generated modules satisfying the Auslander condition is contravariantly finite. As applications, we get some equivalent characterizations of Auslander-Gorenstein rings and Auslander-regular rings.
主讲人简介:
黄兆泳,南京大学数学系教授,博士生导师,江苏省杰出青年基金获得者,连续主持国家自然科学基金面上项目多项。曾获中国高校科学技术奖自然科学奖二等奖,江苏省数学会杰出成就奖。曾多次在国内外重要学术会议做大会报告,并多次应邀访问美国、日本和德国著名高校。在Israel. J. Math.,J. Algebra,J. Pure Appl. Algebra等代数学顶级期上刊发表论文100余篇。