当前位置: 首页 > 学术活动 > 正文
Finite-time blow-up in a 2d Keller-Segel System with rotation
时间:2021年10月26日 12:06 点击数:

报告人:李玉祥

报告地点:腾讯会议ID:340 183 627

报告时间:2021年10月27日星期三10:00-11:00

邀请人:李敬宇

报告摘要:

In this talk we consider Neumann problem for 2D Keller-Segel system with rotation where the rotation angel is A. We prove that: In a general bounded domain, if the initial mass is large than 8π/cos(A), then there exists nonnegative initial datum such that the corresponding nonradial solution blows up in finite time and the blow-up point lies in the domain; if the boundary of the domain contains a line segment and the initial mass is large than 4π/cos(A),then there exists nonnegative initial datum such that the nonradial solution blows up in finite time and the blow-up point lies in the line segment. Let the domain be a disc, if the initial mass is smaller than 8π/cos(A), then the radial solution exists globally in time; if the initial mass is smaller than 4π/cos(A), then the radial solution is globally bounded.

主讲人简介:

东南大学数学学院教授,博士生导师,主持多项国家自然科学基金项目,在CMP,Math Ann.,JDE等著名数学期刊发表50余篇论文。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237