报告人:李保军
报告地点:腾讯会议ID:613 3079 7727
报告时间:2021年10月21日星期四09:00-10:00
邀请人:陈银
报告摘要:
Let $\mathfrak{F}$ be a saturated formation containing all supersolvable groups and $G$ a group with a normal subgroup $E$ such that $G/E \in \mathfrak{F}$. Suppose that every non-cyclic Sylow subgroup $P$ of $E$ (or $F^*(E)$) has a subgroup $D$ such that $1 < |D| < |P|$. A question proposed by A. N. Skiba is: does it $G \in \mathfrak{F}$ hold if all subgroups $H$ of $P$ with order
$|H| = |D|$ and with order $2|D|$ (if $P$ is a non-abelian 2-group and $[P:D]> 2$) are weakly s-supplemented in $G$? In this talk, we focus on this question and some properties of finite groups are discussed.
主讲人简介:
李保军,博士毕业于中国科技大学,研究方向为群论;现为南通大学理学院教授;在J. Algebra、Commun. Math. Stat.、Sci. China Ser. A等国内外知名杂志上发表30余篇高水平论文;主持多项国家自然科学基金委项目。