报告人:唐荣
报告地点:腾讯会议ID:228 368 933
报告时间:2021年9月30日星期四15:00-16:00
邀请人:陈良云
报告摘要:
Rota-Baxter operators and the more general O-operators on Lie algebras together with their interconnected pre-Lie and post-Lie algebras are important algebraic structures with broad applications. This paper introduces the notions of a homotopy Rota-Baxter operator and a homotopy O-operator on a symmetric graded Lie algebra. Their characterization by Maurer-Cartan elements of suitable differential graded Lie algebras is provided. Through the action of a homotopy O-operator on a symmetric graded Lie algebra, we arrive at the notion of an operator homotopy post-Lie algebra, together with its characterization in terms of Maurer-Cartan elements. A cohomology theory of post-Lie algebras is established, with an application to 2-term skeletal operator homotopy post-Lie algebras.
会议密码:0930
主讲人简介:
唐荣, 吉林大学数学学院师资博士后,2019年博士毕业于吉林大学。主要从事Rota-Baxter代数和代数结构形变理论方面的研究,在Comm. Math. Phys.、J. Noncommut. Geom.、J. Algebra等杂志上发表多篇高水平论文,主持国家自然科学基金青年项目。