当前位置: 首页 > 学术活动 > 正文
Compatible structures of nonsymmetric operads, Manin products and Koszul duality
时间:2021年09月22日 15:27 点击数:

报告人:高兴

报告地点:腾讯会议ID:183 582 271

报告时间:2021年9月24日星期五14:00-15:00

邀请人:刘杰锋

报告摘要:

Various compatibility conditions among replicated copies of operations in a given algebraic structure have appeared in broad contexts in recent years. Taking an uniform approach, this paper gives an operadic study of compatibility conditions for nonsymmetric operads with unary and binary operations, and homogeneous quadratic and cubic relations. This generalizes the previous studies for binary quadratic operads. We consider three compatibility conditions, namely the linear compatibility, matching compatibility and total compatibility, with increasingly strict restraints among the replicated copies. The linear compatibility is in Koszul dual to the total compatibility, while the matching compatibility is self dual. Further, each compatibility can be expressed in terms of either one or both of the two Manin square products. It is shown that compatible structures of the operads for associative algebra and differential algebra are Koszul utilizing rewriting systems.

主讲人简介:

高兴,博士,兰州大学“萃英学者”、教授,博士生导师。于2010年7月在兰州大学数学与统计学院获得博士学位,留校工作至今。在2015年8月至2016年8月间,在美国Rutgers大学交流访问。主要从事Rota-Baxter代数和代数组合等领域的研究, 发表SCI学术论文四十余篇,主持数学天元基金、青年科学基金、国家自然科学基金面上项目和甘肃省自然科学基金项目, 获甘肃省自然科学奖二等奖,出版教材一本。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237