报告人:张琼
报告地点:数学与统计学院617室
报告时间:2021年7月13日星期二14:30-15:30
邀请人:柳絮
报告摘要:
We consider the polynomial stability for an abstract system of the type $u_{tt} + Lu + B u_{t} = 0,$ where $L$ is a self-adjoint operator on a Hilbert space and operator $B$ represents the local damping. By establishing precise estimates on the resolvent, we prove polynomial decay of the corresponding semigroup. The results reveal that the rate of decay depends strongly on the concentration of eigenvalues of operator $L$ and non-degeneration of operator $B$. As an application of our abstract results, we give the decay rate of the energy for a wave equation with local viscous or viscoelastic damping.
主讲人简介:
张琼,北京理工大学教授、博导。研究领域包括分布参数控制理论;偏微分方程解的渐近性分析;算子半群及其对偏微分方程的应用等。主持国家自然科学基金3项,北京市自然科学基金3项,教育部留学回国人员科研启动基金1项。在国际控制与应用数学领域顶尖和知名期刊发表论文近30篇,专著1部。