当前位置: 首页 > 学术活动 > 正文
Schur Q-polynomials and intersection numbers on moduli spaces of curves
时间:2021年06月18日 08:14 点击数:

报告人:刘小博

报告地点:数学与统计学院104室

报告时间:2021年6月20日星期日10:00-11:00

邀请人:刘杰锋

报告摘要:

Generating functions of intersection numbers of certain tautological classes on moduli spaces of stable curves provide geometric solutions to integrable systems. Notable examples are the Kontsevich-Witten tau function and Brezin-Gross-Witten tau function. Both of them are tau-functions of the KdV hierarchy. Recently Mironov-Morozov gave a formula expressing Kontsevich-Witten tau function as a simple expansion of Schur's Q-polynomial with simple coefficients. This formula was called Mironov-Morozov conjecture by Alexandrov. A similar formula was also conjectured by Alexandrov for Brezin-Gross-Witten tau function. In this talk I will describe proofs of these formulas using Virasoro constraints. This is a joint work with Chenglang Yang.

主讲人简介:

刘小博,北京大学讲席教授,北京国际数学研究中心副主任,北京大学数学研究所副所长。曾任美国University of Notre Dame 教授,获得美国Sloan基金会Research Fellowship,2006年获邀在马德里召开的国际数学家大会作45分钟报告。主要研究领域包括Gromov-Witten不变量理论和等参子流形理论,在Annals of Mathematics, Duke Math. J. 等国际著名期刊上发表多篇高质量论文。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237