当前位置: 首页 > 学术活动 > 正文
Learning Deep Sparse Regularizers with Applications to Multi-View Clustering and Semi-Supervised Classification
时间:2021年06月01日 23:06 点击数:

报告人:王石平

报告地点:腾讯会议ID:108 399 662

报告时间:2021年06月01日星期三9:00-10:00

邀请人:刘 俊

报告摘要:

Sparsity-constrained optimization problems are common in machine learning, such as sparse coding, low-rank minimization and compressive sensing. However, most of previous studies focused on constructing various hand-crafted sparse regularizers, while little work was devoted to learning adaptive sparse regularizers from given input data for specific tasks. In this paper, we propose a deep sparse regularizer learning model that learns data-driven sparse regularizers adaptively. Via the proximal gradient algorithm, we find that the sparse regularizer learning is equivalent to learning a parameterized activation function. This encourages us to learn sparse regularizers in the deep learning framework. Therefore, we build a neural network composed of multiple blocks, each being differentiable and reusable. All blocks contain learnable piecewise linear activation functions which correspond to the sparse regularizer to be learned. Furthermore, the proposed model is trained with back propagation, and all parameters in this model are learned end-to-end.


主讲人简介:

王石平,男,博士,教授,博士生导师,福州大学“旗山学者”(海外计划),福建省引进高层次人才(C类)。在国际著名期刊和会议IEEE Trans. Pattern Analysis and Machine Intelligence, IEEE Trans. on Multimedia, IEEE Trans. SMC: Systems, IEEE Trans. Image Processing, IEEE Trans. Intelligent Transportation Systems, IEEE Trans. Computational Social Systems, Pattern Recognition, Information Sciences, Knowledge-Based Systems, Computer Vision and Image Understanding 等上发表SCI,EI检索论文60余篇,Google Scholar 引用1000余次,h-index和i10-index指数分别为17和23,Google 引用1000余次。 研究方向:机器学习、深度学习、特征表示、维数约简。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237