当前位置: 首页 > 学术活动 > 正文
The topological and arithmetic of surface fibrations over rational
时间:2021年05月21日 13:38 点击数:

报告人:龚成

报告地点:腾讯会议ID:781506855

报告时间:021年05月28日星期五10:00-11:00

邀请人:陈银

报告摘要:

Fibrations are important tools to classify algebraic surfaces and to study moduli spaces. Fibrations over rational lines play an important role. Many fibrations with remarkable arithmetic and topological properties can be obtained from fibrations over rational lines by base changes. My lecture include two parts: (1) Classify fibrations of algebraic surfaces over rational curves, and give its applications. In particular, we hope to complete the problem proposed by Poincaré for Riccati foliation in 1891. (2) Give some ways to construct simple connected surfaces of general type.

主讲人简介:

龚成,博士毕业于华东师范大学,研究方向为代数几何;现为苏州大学数学科学学学院副教授;在Osaka J. Math、C. R. Math. Acad. Sci. Paris、Internat. J. Algebra Comput.等杂志上发表10余篇高水平论文;主持多项国家自然科学基金委项目。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237