当前位置: 首页 > 学术活动 > 正文
Monitoring mean and variance change-points in long-memory time series
时间:2021年04月11日 10:18 点击数:

报告人:陈占寿

报告地点:腾讯会议ID:579 651 172

报告时间:2021年04月15日星期四10:00-11:00

邀请人:郑术蓉

报告摘要:

In this paper, we propose two ratio-type statistics to sequentially detect mean and variance change-points in the long-memory time series. The limiting distributions of monitoring statistics under the no change-point null hypothesis, alternative hypothesis as well as change-point misspecified hypothesis are proved. In particular, a sieve bootstrap approximation method is proposed to determine the critical values. Simulations indicate that the new monitoring procedures have better finite sample performance than the available off-line tests when the change-point nears to the beginning time of monitoring, and can discriminate between mean and variance change-point. Finally, we illustrate our procedures via two real data sets: a set of annual volume of discharge data of the Nile river, and a set of monthly temperature data of northern hemisphere. We find a new variance change-point in the latter data.

主讲人简介:

陈占寿,青海师范大学教授,博士生导师,南京信息工程大学兼职博导。研究方向:时间序列变点,小区域估计,Bootstrap。发表科研论文40余篇,被SCI、SSCI收录20余篇,EI收录12篇。主持完成国家自然科学基金青年基金1项,青海省自然科学基金2项,参与完成2项国家自然科学基金项目和1项教育部人文社科基金项目;现主持国家自然科学基金1项,1项青海省自然科学基金和1项中科院西部地区人才项目,2项国家天元西北中心促进西北地区发展活动项目,参与1项国家自然科学基金项目,1项青海省自然科学基金。青海省“高端创新千人计划”拔尖人才,青海省高校“135高层次人才培养工程”拔尖学科带头人,第十二批青海省自然科学与工程技术学科带头人(统计学),第九批省级骨干教师;获青海省自然科学优秀论文三等奖2项,青海省教育厅“小岛”奖1次,指导学生获全国大学社统计建模大赛二等奖1项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237