报告人: 常晋源
报告地点:腾讯会议
报告时间:2020年12月09日星期三19:00-20:00
邀请人:郑术蓉
报告摘要:
Models defined by moment conditions is at the center of empirical structural economic estimation. One of the challenges is the presence of invalid moments in a large pool of valid moments that may improve estimation efficiency. This paper studies empirical likelihood estimation of moment-defined models in general high-dimensional settings which accommodate invalid moments, where the number of moments and parameters are allowed to be much larger than the sample size. We show that penalized empirical likelihood (PEL) enjoy the oracle property which consistently estimates the invalid moments and the zero coefficients. Although the asymptotic normality of PEL is accompanied by an asymptotic bias term incurred by the herd of moments, PEL can serve as an initial estimator for the second-step projected PEL if the interest lies in the statistical inference of a low-dimensional parameter. Simulation exercises are carried out to demonstrate excellent finite sample performance of our methods in estimation and inference. We apply this method to stay the determinants of institution in development economics.
会议ID:249 153 097
主讲人简介:
西南财经大学光华特聘教授、博士生导师、数据科学与商业智能联合实验室执行主任、四川省特聘专家、四川省统计专家咨询委员会委员。主要从事“超高维数据分析”和“高频金融数据分析”两个领域的研究,已在Annals of Statistics、Biometrika、Journal of Econometrics和Journal of the American Statistical Association等国际学术期刊上发表论文18篇。2013年获得中国数学会第11届钟家庆数学奖,2019年获得四川省第十八次社会科学优秀成果三等奖,2020年获得霍英东教育基金会第十七届高等院校青年教师奖一等奖和第八届高等学校科学研究优秀成果奖(人文社会科学)三等奖。现正担任Journal of the Royal Statistical Society Series B、Journal of Business & Economic Statistics以及Statistica Sinica的副主编。