当前位置: 首页 > 学术活动 > 正文
Unitary equivalence of complex symmetric contractions with finite defect
时间:2020年12月08日 10:38 点击数:

报告人:Caixing Gu

报告地点:Zoom

报告时间:2020年12月10日星期四10:00-11:00

邀请人:段永江、李宇飞

报告摘要:

A criterion for a contraction T on a Hilbert space to be complex symmetric is given in terms of the operator-valued characteristic function \Theta_{T} of T in 2007 by Chevrot, Fricain, and D. Timotin. To further classify unitary equivalent complex symmetric contractions, we notice a simple condition of when \Theta_{T_{1}} and \Theta_{T_{2}} coincide for two complex symmetric contractions T_{1} and T_{2}. As an application, surprisingly we solve the problem for any defect index n, when the defect indexes of contractions are 2, this problem was left open in them. Furthermore, a construction of 3\times3 symmetric inner matrices is proposed, which extends some results on 2\times2 inner matrices by Garcia and 2\times2 symmetric inner matrices by Chevrot, Fricain, and D. Timotin.

会议网址:https://calpoly.zoom.us/j/85356777691

会议ID: 853 5677 7691

主讲人简介:

美国加州州立理工大学(California Polytechnic State University)教授。1994年在印第安纳大学(Indiana University)获得博士学位。主要从事算子理论、矩阵分析、系统和控制理论的研究。在Math. Ann., J. Funct. Anal., Trans. Amer. Math. Soc., Pacific J. Math.等杂志发表文章60余篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237