报告人:马世琪
报告地点:腾讯会议
报告时间:2020年12月03日星期四14:30-15:30
邀请人:刁怀安
报告摘要:
We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the metric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends previous results from the Euclidean case to certain Riemannian metrics.
会议网址:https://meeting.tencent.com/s/mmc8qP4OwpIo
会议ID:503 615 999
主讲人简介:
马世琪博士,现为芬兰于韦斯屈莱大学博士后,他于2009年至2016年期间就读于电子科技大学通信学院,先后取得本科及硕士学位,2019年于香港浸会大学数学系获得博士学位。主要从事随机偏微分方程以及相关的反问题研究,相关论文发表于Comm. Math. Phys.,SIAM J. Math. Anal等国际期刊。