A linear map on a Lie algebra over a field F with char(F)2 is called to be commuting (resp., skew-commuting) if (resp., ) for all , and to be strong commutativity-preserving if for all . Let be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this talk, firstly, we improve existing results about skew-symmetric biderivations on P by determining related linear commuting maps. Secondly, we classify the linear skew-commuting maps and the related symmetric biderivations on P, and so the biderivations of P are characterized. Finally, we determine the invertible linear strong commutativity-preserving maps of P.
会议网址:https://meeting.tencent.com/s/whLq0uhyUzKf
会议ID:468 594 187
会议密码:1203
陈正新,福建师范大学教授、博导,主要从事代数表示论与李代数结构方面的研究,在J. Algebra、Proc. Amer. Math. Soc.、Sci. China Ser. A、Comm. Algebra、Linear Algebra Appl.、Linear Multilinear Algebra等期刊发表SCI论文30余篇,主持国家自然科学基金面上项目、青年项目、福建省自然科学基金、福建省教育厅高校青年重点基金等。