当前位置: 首页 > 学术活动 > 正文
Biderivations and strong commutativity-preserving maps on parabolic subalgebras of simple Lie algebras
时间:2020年11月30日 21:49 点击数:

报告人:陈正新

报告地点:腾讯会议

报告时间:2020年12月03日星期四9:30-10:15

邀请人:陈良云

报告摘要:

A linear map  on a Lie algebra  over a field F with char(F)2 is called to be commuting (resp., skew-commuting) if  (resp., ) for all , and to be strong commutativity-preserving if  for all . Let  be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this talk, firstly, we improve existing results about skew-symmetric biderivations on P by determining related linear commuting maps. Secondly, we classify the linear skew-commuting maps and the related symmetric biderivations on P, and so the biderivations of P are characterized. Finally, we determine the invertible linear strong commutativity-preserving maps of P.

会议网址:https://meeting.tencent.com/s/whLq0uhyUzKf

会议ID:468 594 187

会议密码:1203

主讲人简介:

陈正新,福建师范大学教授、博导,主要从事代数表示论与李代数结构方面的研究,在J. Algebra、Proc. Amer. Math. Soc.、Sci. China Ser. A、Comm. Algebra、Linear Algebra Appl.、Linear Multilinear Algebra等期刊发表SCI论文30余篇,主持国家自然科学基金面上项目、青年项目、福建省自然科学基金、福建省教育厅高校青年重点基金等。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237