Well-posedness of Stochastic 2D Hydrodynamics type Systems with Multiplicative Levy Noises
报告人:翟建梁
报告地点:腾讯会议
报告时间:2020年12月02日星期三10:00-11:00
邀请人:刘红
报告摘要:
We establish the existence and uniqueness of solutions to an abstract nonlinear equation driven by a multiplicative noise of Levy type, which covers many hydrodynamical models including 2D Navier-Stokes equations, 2D MHD equations, the 2D Magnetic Bernard problem, and several Shell models of turbulence. In the existing litetrature on this topic, besides the classical Lipschitz and one sided linear growth conditions, other assumptions, which might be untypical, are also required on the coefficients of the stochastic perturbations. We do not require these untypical assumptions.
会议ID:201 477 536
主讲人简介:
翟建梁副教授于2010年获中国科学院数学与系统科学研究院理学博士,2010年进入北京博士后流动站,现为中国科学技术大学副教授。主要研究方向是Levy过程驱动的随机偏微分方程,最近几年也对随机动力系统方向很感兴趣。已发表论文20余篇, 包括“J. Funct. Anal.”、“Bernoulli”、”“J. Differential Equations”、“J. Math. Pures Appl.”等国际重要杂志。主要学术贡献:Levy过程驱动的随机偏微分方程的鞅解存在性和马氏选择、时间正则性、大偏差原理、中偏差原理等;平稳测度支撑的渐近行为的研究。主持国家自然科学基金青年基金、面上项目各一项,参加国家自然科学基金重点项目一项。