当前位置: 首页 > 学术活动 > 正文
Spatial asymptotics for the Feynman-Kac formulas driven by time-dependent and space-fractional rough Gaussian fields with the measure-valued initial data
时间:2020年11月30日 09:45 点击数:

报告人:吕阳阳

报告地点:腾讯会议

报告时间:2020年12月02日星期三08:30-09:30

邀请人:杨青山

报告摘要:

We consider the continuous parabolic   Anderson model with the Gaussian fields under the measure-valued initial   conditions, the covariances of which are nonhomogeneous in time and   fractional rough in space. We mainly study the spatial behaviors for the Feynman-Kac   formulas in Stratonovich's sense. Benefited from the application of   Feynman-Kac formula based on Brownian bridge, the precise spatial asymptotics   can be obtained in the broader conditions than before.

会议ID:649 654 278

   

   


主讲人简介:

吕阳阳,讲师,2020年毕业于吉林大学数学学院概率论与数理统计专业,获理学博士学位。主要从事随机偏微分方程、随机过程、随机分析、大偏差极限理论等方面研究。多篇论文发表在国际知名概率杂志。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237