A neural network method for the inverse scattering problem of impenetrable cavities
报告人:尹伟石
报告地点:腾讯会议
报告时间:2020年12月01日星期二19:30-20:30
邀请人:刁怀安
报告摘要:
This talk considers a near-field shape neural network (NSNN) to determine the shape of a sound-soft cavity based on a single source and several measurements placed on a curve inside the cavity. The NSNN employs the near-field measurements as input, and the output is the shape parameters of the cavity. The self-attention mechanism is employed to obtain the feature information of the near-field data, as well as the correlations among them. The weights and biases of the NSNN are updated through the gradient descent algorithm, which minimizes the error of the reconstructed shape of the cavity. We prove that the loss function sequence related to the weights is a monotonically bounded non-negative sequence, which indicates the convergence of the NSNN. Numerical experiments show that the shape of the cavity can be effectively reconstructed with the NSNN.
会议网址:https://meeting.tencent.com/s/XKXwBTp56mFK
会议ID:635 221 206
主讲人简介:
尹伟石,长春理工大学副教授,硕士生导师。主要从事数学物理反问题及数值计算、机器学习算法研究。合作主持国家自然科学基金1项,作为主要参与人参与国家自然科学基金2项,省部级项目多项,在《Journal of Computational Physics》、《Electronic Research Archive》、《Alexandria Engineering Journal》、《Advances in Mathematical Physics》等杂志上发表高水平研究论文30余篇。