报告人:汪翔升
报告地点:腾讯会议
报告时间:2020年11月25日(周三)9:30-10:30
邀请人:吴树林
报告摘要:
In this talk, we provide an upper bound of the condition number of a Vandermonde-like matrix which is the eigenvector matrix for a non-symmetric time scheme matrix arising from a direct parallel-in-time numerical method of second-order accuracy. We first apply the theory of orthogonal polynomials to investigate the eigenvalues of the time scheme matrix and prove that these eigenvalues are all distinct and have positive real parts. Next, we use the properties of the Chebysheve polynomials and their zeros to approximate the eigenvalues and estimate the 2-norm of the eigenvector matrix. We also obtain an upper bound of the 2-norm for the inverse of the eigenvector matrix via Lagrange interpolation polynomials. Finally, we find an upper bound of the condition number of the Vandemonde-like eigenvector matrix.
会议ID:819 132 737
主讲人简介:
汪翔升,2009年获得香港城市大学博士学位,现任职于美国University of Louisiana at Lafayette助理教授。主要研究领域为计算数学、逼近理论、微分方程、生物数学等。在Adv. Math.、J. Math. Pures Appl.、J. Differential Equations、SIAM J. Control and Optimization等期刊上发表学术论文四十余篇。