Moderate deviations for extreme eigenvalues of real-valued sample covariance matrices
报告人:王绍臣
报告地点:腾讯会议
报告时间:2020年11月24日星期二08:00-09:00
邀请人:杨青山
报告摘要:
Consider the sample covariance matrices of form $W=n^{-1}C C^{\top}$, where $C$ is a $k\times n$ matrix with real-valued, independent and identically distributed (i.i.d.) mean zero entries. When the squares of the i.i.d. entries have finite exponential moments, the moderate deviations for the extreme eigenvalues of $W$ are investigated as $n\to\infty$ and either $k$ is fixed or $k\rightarrow \infty$ with some suitable growth conditions. The moderate deviation rate function reveals that the right (left) tails of $\lambda_{\max}$ is more like Gaussian rather than the Tracy-Wisdom type distribution when $k$ goes to infinity slowly.
会议ID:937 957 878
主讲人简介:
王绍臣,华南理工大学数学学院,讲师。2015年博士毕业于武汉大学,主要研究方向为随机过程,高维随机矩阵。