报告人:曹延昭
报告地点:Zoom 会议
报告时间:2020年11月28日星期六10:00-11:00
邀请人:李晓月
报告摘要:
Robust control design for quantum systems with uncertainty is a key task for developing practical quantum technology. In this talk, we apply neural networks to learn the control of a quantum system with uncertainty. By exploiting the auto differentiation function developed for neural network models, our method avoids the manual computation of the gradient of the cost function as required in traditional methods. We implement our method using two algorithms. One uses neural networks to learn both the states and the controls and one uses neural networks to learn only the controls but solve the states by finite difference methods. Both algorithms incorporate the sampling-based learning process into the training of the networks. The performance of the algorithms is evaluated on a practical numerical example,followed by a detailed discussion about the advantage and trade-offs between our method and the other numerical schemes.
会议网址:https://kansas.zoom.com.cn/j/93437349633
会议ID:934 3734 9633
会议密码:572099
主讲人简介:
曹延昭,美国奥本大学(Auburn University)数学与统计学系教授,主要从
事偏微分方程和积分方程数值解法、随机偏微分方程数值解、非线性滤波、不确
定性量化等领域的研究,部分重要研究成果发表在SIAM J. Numer. Anal.、Numer.
Math.、Math. Comp.、IMA J. Numer. Anal.等计算数学国际顶尖杂志。现担任包
括计算数学国际顶尖期刊SIAM J. Numer. Anal. 在内的多个学术期刊编委,研究
课题得到美国国家自然基金及美国空军科学研究室的长期资助。