当前位置: 首页 > 学术活动 > 正文
Use of random integration to test equality of high dimensional covariance matrices
时间:2020年11月17日 16:53 点击数:

报告人:姜云卢

报告地点:腾讯会议

报告时间:2020年11月19日星期四18:00-19:00

邀请人:郑术蓉

报告摘要:

Testing the equality of two covariance matrices is a fundamental problem in statistics, and especially challenging when the data are high-dimensional. A common approach is to obtain consistent estimates of the covariance matrices before constructing a test statistic. However, estimating the covariance matrices for high-dimensional is also difficult, albeit sometimes alleviated by assumptions such as sparsity. Through a novel use of random integration, we can test the equality of high-dimensional covariance matrices without estimating them and without assuming parametric distributions for the two underlying populations, even if the dimension is much larger than the sample size. The asymptotic properties of our test for arbitrary number of covariates and sample size are studied in depth under a high-dimensional factor model. The finite sample performance of our test is evaluated through numerical studies. The empirical results demonstrate that our test is highly competitive with existing tests in a wide range of settings. In particular, our proposed test is distinctly powerful under difficult settings when there are only a few large or many small diagonal disturbances between the two covariance matrices.

会议ID:478 492 996

主讲人简介:

姜云卢,暨南大学经济学院统计学系副教授、博士生导师。2012年博士毕业于中山大学数学与计算科学学院。目前的主要研究包括:稳健统计、高维数据分析、变量选择、深度函数和混合模型,至今已公开在JASA、Technometrics等国内外知名期刊上发表SCI论文20余篇,其中入选ESI前1%高被引论文1篇;主持国家自然科学基金青年基金1项、广东省自然科学基金面上项目2项、全国统计科学研究项目一般项目1项、广东省高等教育教学研究和改革项目1项;荣获“暨南双百英才计划”暨南杰青第一层次和第二层次各一次;入选广东省高等学校“千百十工程”第八批校级培养对象;荣获第八次广东省统计科研优秀成果奖一等奖(排第三)。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237