当前位置: 首页 > 学术活动 > 正文
Compact differences of composition operators on Bergman spaces induced by doubling weights
时间:2020年11月12日 18:58 点击数:

报告人:刘斌

报告地点:腾讯会议

报告时间:2020年11月16日星期一16:00-17:00

邀请人:段永江

报告摘要:

Bounded and compact differences of two composition operators acting from the weighted Bergman space $A^p_\omega$ to the Lebesgue space $L^q_\nu$, where $0<q<p<\infty$ and $\omega$ belongs to the class~$\mathcal{D}$ of radial weights satisfying a two-sided doubling condition, are characterized. On the way to the proofs a new description of $q$-Carleson measures for $A^p_\omega$, with $p>q$ and $\omega\in\mathcal{D}$, involving pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of $q$-Carleson measures for the classical weighted Bergman space $A^p_\alpha$ with $-1<\alpha<\infty$ to the setting of doubling weights. The case $\omega\in\widehat{\mathcal{D}}$ is also briefly discussed and an open problem concerning this case is posed.

会议网址:https://meeting.tencent.com/s/vn6MsVYo702O

会议ID:979 976 358

会议密码:654321

主讲人简介:

刘斌,主要研究方向为函数空间和算子理论, 博士就读于东芬兰大学。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237