报告人:许璐
报告地点:腾讯会议App
报告时间:2020年11月09日星期一13:30-14:30
邀请人:祖建
报告摘要:
This is a joint work with Prof. Y.Yi and Prof. Y.Li. My talk is about the quasi-periodic motions in multi-scaled Hamiltonian systems. It consists of four part. At first, I will introduce the results in integrable Hamiltonian systems since what we focus on is nearly-integrable Hamiltonian system. The second part is the definition of nearly-integrable Hamiltonian system and the classical KAM theorem. After then, I will introduce that what is Poincare problem and some interesting results corresponding to this problem. The last part, which is also the main part, I will talk about the definition and the back ground of nearly-integrable Hamiltonian system, then the persistence of lower dimensional tori on resonant surface, which is our recent result. I will also simply introduce the Technical ingredients of our work.
会议网址:https://meeting.tencent.com/s/SkKQNx0AEFwN
会议ID:679 935 480
会议密码:123456
主讲人简介:
许璐,吉林大学副教授,主要研究多尺度近可积哈密顿系统不变环面保持性,是研究KAM理论的专家,动力系统领域有杰出的青年学者。许璐本科毕业于吉林大学数学学院,2011年在吉林大学获得博士学位,师从李勇教授,2012-2013年在美国佐治亚理工学院从事博士后研究工作,合作导师为易英飞教授和de la Llave教授。许璐与合作者在多尺度KAM理论领域有许多重要的工作,主要成果发表在《 Ann. Henri Poincaré》,《 J. Nonlinear Sci.》,《 Nonlinearity》等国际权威杂志上。