当前位置: 首页 > 学术活动 > 正文
Optimal portfolio execution problem with stochastic price impact
时间:2020年10月30日 13:43 点击数:

报告人:马贵元

报告地点:腾讯会议

报告时间:2020年11月02日星期一10:00-11:00

邀请人:邢佳敏

报告摘要:

In this paper, we provide a closed-form solution to an optimal portfolio execution problem with stochastic price impact and stochastic net demand pressure. Specifically, each trade of an investor has temporary and permanent price impacts, both of which are driven by a continuous-time Markov chain; whereas the net demand pressure from other inventors is modelled by an Ornstein-Uhlenbeck process. The investor optimally liquidates his portfolio to maximize his expected revenue netting his cumulative inventory cost over a finite time. Such a problem is first reformulated as an optimal stochastic control problem for a Markov jump linear system. Then, we derive the value function and the optimal feedback execution strategy in terms of the solutions to coupled differential Riccati equations. Under some mild conditions, we prove that the coupled system is well-posed, and establish a verification theorem. Financially, our closed-form solution shows that the investor optimally liquidates his portfolio towards a dynamic benchmark. Moreover, the investor trades aggressively (conservatively) in the state of low (high) price impact.

会议ID:791 251 065

会议密码:123456

主讲人简介:

马贵元 西安交通大学经济与金融学院金融科技系助理教授。 本科毕业于吉林大学数学学院。2017年于澳大利亚University of Wollongong 取得博士学位,并继续担任助理研究员。2019年加入香港中文大学统计系,从事博士后研究工作。研究领域包括最优投资消费问题,期权衍生品定价问题以及随机微分方程在经济与金融中的应用。目前在《Automatica》、《European Journal of Operational Research》、《Journal of Optimization Theory and Applications》、和《Applied Mathematics and Computation》等国际知名期刊上共发表论文多篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237